Where is Everyone? The Fermi Paradox, Astrobiology and Exoplanets

thingswedontknow

This the first in a series of posts by me at Things We Don’t Know about the many unknowns involved in the study of planets in the orbit of other stars across the galaxy. 

Since the middle of the last century, against the backdrop of greatly expanding space technology and understanding, scientists have wondered about our place in the vast universe and whether we are alone or not. When it comes down to it, why would we be? There is no reason, be it physical or chemical, life couldn’t exist elsewhere. At first glance it seems that we live on a relatively normal planet, our parent star is of a fairly common variety and our corner of the galaxy isn’t all that extraordinary. Water and other ‘building block’ organic compounds, thought crucial for life in any imaginable form, are relatively abundant throughout the galaxy.

There are at least 100 billion (that’s a 1 followed by eleven zeroes) stars in the Milky Way galaxy alone; many we now know come complete with a family of planets in their orbit. On top of that, several of these newly-discovered ‘exoplanets’ are not that different from the Earth in mass or orbital distance from their parent stars. In fact, a recent study calculated that a staggering 17 billion Earth-like planets are likely to exist in the Milky Way alone! Surely, more than one of those worlds would have life of some kind or the other clinging to its surface? And if there was life, even if it was almost vanishingly rare, could another species with a similar level of intelligence to humans exist on another one of those billions of planets out there in the reaches of space?

eso0939a[1]

Artist’s impression of Gliese 667Cc, a possible Earth-like exoplanet 22 light years distant, in the constellation Scorpius.
Credit: ESO/L. Calçada

Given that a multitude of habitable worlds exist, many covered in a primordial cocktail of complex, biologically useful compounds, it seems that the Milky Way should be teeming with life. So, where is everyone?  This question has proved tricky, paradoxical even. Accordingly, it’s known as the Fermi Paradox after the Italian astronomer who first posited the riddle to the wider scientific community, where it was met with unexpected consternation. Over 50 years on and it remains a question without an answer. SETI pioneer Frank Drake devised an equation to address the problem, called the Drake Equation, which attempts to provide an estimate of the likely number of other civilisations in the Milky Way. However, the huge uncertainties involved in each stage of the calculation limits its predictive powers to more of interesting thought exercise than a robust scientific methodology.

What does this apparent silence say about us and our planet? Are we the product of an extremely fortunate evolutionary accident resulting from the interplay between our astronomical and planetary environment? On some distinguishable level, the search for other intelligent species is a thinly veiled search for our own place, both physically and philosophically and convincing proof of a co-existent alien civilisation would most likely have significant scientific, social, political and religious ramifications.

Today, researchers in the burgeoning scientific field of astrobiology attempt to tackle these kinds of open questions, as well as many others in disciplines spanning chemistry and geology, astronomy, biology and even economics and the social sciences. In my completely biased opinion, studying exoplanets is one of the most exciting areas of science to be working in right now, and the rate of new advances and discoveries are progressing at breakneck speed (for science, anyway). However, even despite these recent findings, our understanding of the processes operating on these planets remains regrettably threadbare. Given the immense distances involved and sensitivity required, only limited data is available for a given planet and some large uncertainties remain even when information has been collected. We have yet to image an exoplanet directly, and it may be decades before the technology is available to do so.

Over the course of several posts, I’ll do my best to illuminate the cunning techniques that are being used to tease exoplanet data out of the noise, and explain how the limitations of contemporary technology are driving the development of new methods of remote planetary investigation. Despite the difficulties involved, a picture of our planetary neighbours is beginning to emerge and the results have been surprising and exciting in equal measure.

Exoplanet Update

It’s been a busy couple of weeks for exoplanetary discoveries, but also for me, which explains why I’ve taken so long getting round to writing about them.

On the 28th of August, the Kepler mission announced the discovery of a unique binary star two planet system. The Kepler 47 family consists of a binary pair, a G-type star – about 84% as massive as the Sun, and a smaller M-type red dwarf roughly 36% of the Sun’s mass, but only 1.4% as luminous. Two planets have been observed to be orbiting the pair. The closest is of these is Kepler 47 (AB) b, estimated (from mass-radius relationships) to be between 7 and 10 Earth masses, but the error on this figure remains large. The outermost planet, Kepler 47 (AB) c, is Neptune-sized (16 – 23 Earth masses) and is orbiting within the habitable zone, although due to its large mass it is unlikely to fulfil the traditional requirements for planetary habitability. The configuration of the Kepler 47 system illustrates the fact that stable multi-planetary orbits can exist around binary stars, and brings the total of circumbinary planets to six.

Artist’s impression of the Kepler 47 system. (NASA/JPL-Caltech/T. Pyle)

On the 29th of August, a new planet was added to the Habitable Exoplanets Catalog (HEC) bringing the total to six (including: Gliese 581d and g, Gliese 677Cc HD 85512b, Kepler 22b). Super-Earth Gliese 163c was established to be orbiting within the habitable zone of its 0.40 Solar mass star by an  international team working at the European HARPS project. It completes an orbit in 26 days and has a mass no less than 6.9 times that of the Earth. The custodians of the HEC database have given Gliese 163c an Earth Similarity Index (ESI) rating of 0.73, establishing it as the 5th ‘most habitable’ exoplanet discovered to date, despite exhibiting possible surface temperatures of 60 °C or above.

Gliese 163 c infographic: Warm Superterran Exoplanet in the Constellation Dorado (PHL @ Arecibo/HEC)

Speaking to online science network io9, HEC lead scientist Professor Abel Méndez in the Planetary Habitability Laboratory at the University of Puerto Rico at Arecibo said, “Gliese 163c ranks fifth in our current list of six potentially habitable exoplanets because it is nearly twice the size of Earth and its temperature is also higher, but it’s still an object of interest for the search of biosignatures by future observatories.” The HEC has yet to assess Kepler 43 (AB) c, but it is not likely to fare well in habitability assessments due to its large mass.

Bringing my own (as-of-yet-unpublished, but in preparation) research into planetary habitable periods to the table, Kepler 43 (AB) c has a residence time within the habitable zone of approximately 3.9 billion years, whilst Gliese 163c can be expected to within the habitable zone for at least 22.6 billion years. The habitable zone is now populated by 8 planets (including the Earth), and looks a bit like this:

The habitable zone and confirmed habitable zone exoplanets. The dashed lines indicate differing models of cloud cover. Data points are not to scale. (Author’s own research)

It’s certainly an exciting time to be working in this field; nearly each new week brings another interesting discovery. Keep looking up!

 

Parent of the Perseids

Around this time every year, the Earth, on her year long trundle around the Sun, passes through the Perseid cloud of cometary debris. The resulting month long encounter produces arguably the most prolific and spectacular meteor shower for northern observers – the Perseids.  As many as 100 “shooting stars” an hour may be visible at its peak in mid-August and the shower is eagerly awaited by sky-gazers for it’s dazzling and reliable display of colourful meteors and fireballs.

The source of the Perseids is dust and debris contained in a relatively dense ‘cloud’ impacting the upper atmosphere of the planet and burning up due to rapid deceleration due to increased aerodynamic drag. The shower has been observed for millennia,  the first recorded sighting was in 69 BC, and most of the dust and debris responsible for the shower was pulled off a comet a thousand years ago. The particles that produce this astronomical light-show are generally tiny, on the order of centimetres, and pose little threat to the Earth below.  However,  the same cannot be said for their parent, comet Swift-Tuttle.

Composite Image of The Perseid Meteor Shower from Mount Hood (Gary Randall, 2012)

Comet Swift Tuttle (designation: 109P/Swift–Tuttle) is a typical Halley-like long period comet. It tears through the inner solar system when nearing the closest approach of its 133 year orbit around the Sun; an orbit that takes it out 12 AU past Pluto to 51 AU, and all the way back again.  Its last close encounter with Earth was in 1992, and it won’t return until 2126.

For a while following its rediscovery in 1992, almost 10 years away from its expected position, the orbital evolution of the comet was not well constrained and there was considerable cause for alarm when it was estimated to be on a collision course with Earth in 2126. Concern was justified:  its nucleus is 26km in diameter, considerably larger than the 10 km impactor that is thought to have caused the Cretaceous-Paleogene (K-T) mass extinction event 65 million years ago. However, reanalysis of ancient records of observations and improved calculations that included the effects of nucleus evaporation confirmed that the comet is on a very stable orbit and poses little threat to Earth for the next 2000 years.

That said, in a 1997 book by South African/American radio astronomer Gerrit Verschuur, comet Swift-Tuttle was described as the most dangerous object known to man for it’s ability to cause catastrophic damage if it was to impact the Earth. An exceptionally close encounter is expected in 4479, bringing Swift Tuttle to within 0.03 AU (approximately 4 million km) of the Earth – roughly 10 times the mean Earth-Moon distance. Travelling at a relative velocity of 60 km per second, Swift-Tuttle would unleash the equivalent of a devastating 3.2×1015 tons of TNT upon impact – 27 times the energy of the K-T impactor. For comparison, the largest nuclear weapon ever detonated was a ‘mere’ 50 megatons (106). It would very likely cause huge loss of life across the planet and result in a mass extinction unlike any known previously, whilst placing unbridled pressure on the capacity for human civilisation to recover. If the initial impact was survived, tsunamis, wildfires, earthquakes, years of darkness and a toxic atmosphere would follow. Harvard astrophysicist John Chambers estimates the chance of collision in 4479 to be 1 in 1,000,000. Best of luck to our descendants 2467 years from now!

It is worth bearing this in mind when you gaze up over the next few nights to witness the magnificent sight of the ancient dust of this comet burning up in our atmosphere, for one day their parent may put on a somewhat more spectacular, if devastating, show.

Men and Machines

Imagination will often carry us to worlds that never were. But without it we go nowhere.

– Carl Sagan (Cosmos, 1980)

Since the dawn of civilisation, humans have gazed up at the stars and planets overhead. Even now, separated from our forebears by an expansive gulf of time, technology and knowledge, the stars remain distant, esoteric but evocative targets. Our curiosity and thirst for understanding drives us on, pushing the limits of human endurance, engineering and science to the point where 528 humans from 38 nations have flown beyond the tenuous envelope of gases clinging to the surface of the Earth into wilderness of space. A first, unsteady and cautious step into the vast unknown that surrounds our tiny globe. Of these, only 12 have stepped foot on the surface of the Moon. At over 385,000 km away, reaching the desolate face of our lunar companion remains the pinnacle of manned spaceflight capability, yet it is a mere stone’s throw from Earth in astronomical terms. We peer out from the relative safety of our home, edge into the abyss that surrounds us and tentatively contemplate its content.

The delicate squishiness of the human form is not conducive to the hostile environment of space. Fleshy bags of meat and fluids don’t travel well in a vacuum, the near absolute-zero temperatures dessicate skin and lung and our fragile bones snap and break easily under undue strain. Bombarded by radiation, and far from the protective effect of the ozone layer, our cells mutate and die.  Ingenuity and engineering have surmounted these problems in the short term by wrapping our bodies in spacecraft and suits, but the frailties of our terrestrial form remain.

As with many aspects of our lives, we have increasingly outsourced the monumental task of space exploration to robotic envoys. Obedient, unfaltering and better able to withstand the hardships of space travel, these metallic pioneers are our eyes and ears in the depths of space, straddling the boundary of the known and unknown to help us elucidate the mysteries of our near and distant planetary neighbours. Beacons in the fog, they light the way out into space.

Moreover, these scientific emissaries are more than merely (very expensive) collections of navigational equipment, cameras, sensors and propulsion. They are more than laboratories, more than the experiments they conduct, or the raw data they return. More too than the images they record, most never seen by the eyes of a human. These magnificent machines, representative of the peak of human exploratory technology are much greater than the sum of their parts. Often the result of years of international collaboration, teamwork, anguish and joy, these are the ambassadors of our knowledge, the manifestations of the spirit of human curiosity and the first steps of a lonely species wandering out into the darkness. Whilst they wander space in isolation, they have the dreams and imagination of many people behind them.

This is why, when a launch fails or an unmanned probe goes missing, the loss is felt by us all. The cost can be counted in dollars or euros, but the real price is the setback to the campaign for understanding that our failed or lost probe was spearheading. A scout lost to the enemy. I’ve heard stories of folks who cried at the loss of Beagle II (the British-built Mars lander lost to the Martian atmosphere in 2003/4), and who amongst us are not moved by xkcd‘s wonderful homage to the late (but very successful) MER Spirit rover?

On the eve of the landing of MSL Curiositythe most complex rover ever designed, it is worth bearing in mind the hard work and dedication that it took for the latest generation of scientists and engineers to push the limits of our understanding and put a car-sized robot on Mars. I wish all those involved in the construction and operation of this wonderful machine the best of luck. Earth is rooting for you!

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Follow Curiosity’s landing live at JPL’s site here

Enough Time for Life: Part II

We are like butterflies who flutter for a day and think it’s forever.

 -Carl Sagan. Cosmos

In my last post I discussed how it was possible to make tentative estimates about the total amount of  time that a planet spends in the habitable zone, also known as its habitable period, and why this is important.  In this post, I’d like to put numbers to those estimates.

This figure plots the results as a function of star mass, running along the horizontal axis. The vertical axis is in units of billions of years, and is on a logarithmic scale. The dashed line running through the middle (‘mean habitable period’) represents the habitable period that would be expected if a planet was located right in the centre of the habitable zone at the beginning of the star’s lifetime. I’ve included it to highlight the fact that lower mass stars have longer habitable periods. I’ve also included the Earth and Mars, as well as the four habitable exoplanet candidates mentioned in the preceding post.

This simple model, the results of which are outlined in the image above, estimates the Earth’s total habitable period to be approximately 4.91 billion years, meaning that it will end about 370 million years  from now. That sounds like a long time, and in the context of human time-scales, it certainly is. Even geologically, the world of  370 million years ago was a very different place. It was the height of the Late Devonian period, and a full 172 million years after the Cambrian explosion saw the rapid diversification and speciation of some the earliest complex eukaryote life. The first forests were in the process of transforming the landscape of the supercontinent Gondwana, unconstrained by the lack of large herbivorous animals, and the first tetrapods were appearing in the fossil record. Who knows what transformations the world and life will undergo during the next 370 million years?

I should note that the error bars for these numbers are high, and I’m making no concrete predictions here for the inhabitants of the world 369 million years from now to call me out on. The habitable zone as a theory itself is fraught with assumptions that are, at this stage of understanding, regrettably necessary and regularly challenged and amended.

The Clock is Ticking

Like as the waves make towards the pebbl’d shore,
So do our minutes hasten to their end

 -William Shakespeare, Sonnet LX

It remains intrinsically unsettling to consider the fact that at some point our lovely blue-green home planet will eventually lose its ability to support life. It is certain that, whether after 4.91 billion years or not, the edge of the gradually advancing theoretical boundary of habitability will near planet Earth; now an apocalyptic world of blistering heat and desolation, unrecognisable from today’s lush, watery paradise. As Sol’s mass, radiative output and surface temperature steadily increase,  the Earth’s climate will eventually become scorching. The fundamental biogeochemical mechanisms that help to regulate the Earth’s climate will break down, buckling under the strain of the ever encroaching Sun, and a ‘runaway greenhouse‘ crisis will result. Caused by the evaporation of the oceans and the initiation of a irreversible water vapour/temperature feedback mechanism, the runaway greenhouse is thought to be responsible for the of climate of Venus today. High temperatures result in more water vapour in the air and higher humidity, which in turns boosts the temperature further causing more evaporation and more humidity. Eventually the Earth will become enveloped in thick, impenetrable cloud, insulating the surface and acting like an planet-wide pressure cooker, undoubtedly heralding the end of life on the Earth as we know it.

As the Sun grows larger and hotter, high energy particles from the solar wind will eventually strip away this thick atmosphere which will be forever lost to space. The parched, molten husk of the Earth, former home to countless organisms and every human ever to exist, as well as the stage to every single event, from the minuscule to the revolutionary that took place for nearly 5 billion years, will probably be devoured by the Sun long after it has become inhospitable for life, an incomprehensibly distant 7 billion years from now.

What Earth may look like 5-7 billion years from now – after the Sun swells and becomes a Red Giant. (Wikipedia)

The Earth, my friends, is lost. But fear not, perhaps we could move out to Mars? Our dusty neighbour will move into the habitable zone approximately 1.7 billion years from now, and stay there for the remainder of the Sun’s main sequence lifetime. The Sun in it’s death throes will make for an incredible sight in the Martian sky. However, Mars has a very chaotic orbit, making it difficult to determine exactly where it will be in the distant future. On top of all this, it’s hard to predict what conditions will be like around the ageing Sun.

Well, so much for the Earth and Mars. Let’s hope that in the preceding 370 million years our descendants make it to a better world.

The Lives of Planets

The Super-Earth Gliese 581d (top left of plot) has an approximate habitable period of over 50 billion years. I don’t know about you, but I have real difficultly grasping the truly unfathomable immensity of that amount of time. Research suggests that its star, red dwarf Gliese 581, is approximately 8 billion years old, and therefore the habitable zone has been home to Gliese 581d for 1.4 times as long as the Earth has existed for, yet it is only 13% of the way through its total habitable period.  Still, this isn’t to say that it’s ‘habitable’; there are plenty of other factors (its large mass for example) that suggests that it’s not a place where life would thrive. Although, given 50 billion years who knows what evolution could throw up?

Gliese 667Cc, also orbiting a red dwarf star, will be in the habitable zone for 1.8 billion years because it formed straddling the inner edge – it won’t be (relatively) long until the heat of its star overwhelms its ability to maintain a habitable environment, if it has one at all.  It’s a similar story for the Super-Earth HD 85512 b. Despite it’s location in the habitable zone, it’s still too close to be habitable for any considerable length of time – a mere 603 million years which, if we draw on Earth’s evolutionary history for comparison, is barely enough time for the denizens of the Cambrian to make themselves comfortable, if we extrapolate backwards (and ignore the ~3.5 billion years that it took to get to this stage in the first place).

Kepler 22b is another excellent candidate for a habitable planet, orbiting well within the habitable zone and remaining there for 3.4 billion years. On Earth, 3.4 billion years ago, it is thought that the first primitive organisms had emerged and were building reefs (stromatolites) and going about their daily business of dividing and multiplying – the kind of stuff that modern bacteria tend to fill their lives with. From these humble beginnings we emerged eons later; perhaps the same can be true on Kepler 22b?

In the End…

I realise this has been quite a long article, and I appreciate you sticking it out to the end. I hope that you found it as interesting to read as I did to write. The concept of habitability through time hasn’t been explored in great detail, and I hope to refine these numbers and tweak the model and its assumptions to improve the accuracy of the estimates in the future. Nevertheless, I found it an interesting, and rather humbling, thought experiment if nothing else.

Perspective is important, and yet always in short supply. We’re currently 92% of the way through our planet’s habitable period, enjoying the twilight years of its habitable lifetime. We have to remember that the Earth isn’t going to be able to shelter us indefinitely and that all planets’ lives come to an end at some point. It’s worth bearing that mind when considering that despite our delusions of grandeur, our brief residence on this planet has been a fleeting blip in its long and tumultuous history. Our future may well be too.

Enough Time for Life: Part I

As you may know if you frequent this blog often, I spend a fair amount of time writing about planets that astronomers spend a lot more time discovering. My main interest in these worlds lies with their ‘habitability’, a rather esoteric and loosely defined term that is primarily concerned with describing how broadly livable these planets are,  in a very Earthcentric way. Planetary habitability is an extremely complex recipe that turns climatic, planetary and geological ingredients, added in just the right quantities, into a warm, salty, non-toxic broth. Perhaps life on other planets, if it exists, has completely different requirements, but without a good sample of inhabited planets teeming with life we can’t really be sure and have to make this assumption for now.

A reasonably good place to start looking for planets hosting these conditions is the ‘habitable zone‘ of stars, a concept that I’ve discussed before. The habitable zone describes an area around a star where a planet, if it was discovered to be orbiting within this area, could have liquid water on its surface. Stars of different masses and classifications have different habitable zone distances, and not all planets in the habitable zone are habitable: some may be too massive, others too small, many wouldn’t have the correct mix of atmospheric constituents, others may have no atmosphere at all. In fact, there are more reasons to think that planets, whether inside or outside the habitable zone, are more likely to be completely unsuitable for (Earth-like) life than there are to consider the opposite.

However, whilst habitability is variable in space, it is almost certainly variable in time as well. The habitable zone isn’t a fixed distance: its boundaries move outwards as the star undergoes main-sequence evolution, growing larger and hotter over time. More massive stars (classifications F, G and K) have the shortest main sequence lifetimes and therefore the habitable zone boundaries around these stars migrate outwards at a proportionally more rapid rate. Low mass stars, M-stars for example, have extensive lifetimes on the order of tens or hundreds of billions of (Earth) years, and therefore their habitable zones are relatively more static in time.

The Habitable Period: A Measure of Habitability Through Time

The habitable zone for stars of different masses at the point of entry on to the ‘main sequence’. The horizontal axis shows the distance from the star in astronomical units (AU) on a logarithmic scale. The dashed boundaries illustrate the uncertainty of the HZ when cloud cover is taken into account.

HZZAMS

The habitable zone for stars of differing masses at the end of their main sequence evolution.

The time that a planet spends within the habitable zone can be considered its ‘habitable period‘. The habitable period of a planet is an important factor when considering the possibility of life on these worlds. A planet with a long habitable period is perhaps more likely to host complex organisms that require more time to evolve, if we make the assumption that evolution by natural selection is a universal constant, operating in a similar way in potential exobiological systems as it does on Earth. An alternative means of speciation has not been discovered on Earth, and natural selection has withstood 200 years of intense scientific scrutiny and analysis relatively unscathed. As before, with a sample of one assumptions have to be made.

Building on this idea, if it is possible to determine the extent of the habitable zone at the beginning and end of the star’s main sequence lifetime using modelling techniques, and estimate the approximate age of the star, then a rate of outward migration of the boundaries of the habitable zone can be derived and quantifying the habitable periods of these planets becomes a possibility.

The figures above go some what to illustrating this point: the image on the left shows the extent of the habitable zone of different stars at the stage at which the star enters the ‘main sequence‘ – the beginning of its hydrogen-burning life. I’ve included the Earth, Mars and the confirmed habitable zone exoplanets from the Habitable Exoplanet Catalog and plotted them at their semi-major axes. Note that the Earth and Kepler 22b are comfortably within the warming embrace of their respective suns’ habitable zone at this stage, whilst the other planets remain fairly peripheral. The figure on the right shows the same planets in the same relative orbital locations, but at the end of their star’s lives. Earth, Kepler 22b and most of the other planets, with the welcome exception of Mars (not likely to be at this location in the future anyway because of its chaotic orbit), have all been relegated to the dangerous and inhospitable ‘hot zone’ nearest the star as the boundaries of the habitable zone migrated past their positions at some point during stellar evolution. The rate at which the imaginary boundaries move outwards is proportional to the mass of the star, as discussed above.

I used a very simple model to estimate exactly how long these planets will spend in the habitable zone and I’ll post the results in the coming days.

Bugs from Space: Panspermia and The Interplanetary Transfer of Life

Teeming with Life? The Rho Ophiuchus cloud complex located about 500 light-years away. This view spans about five light-years across. The false-color image is taken from the Spitzer Space Telescope.

Historically, the theory of panspermia (from the Greek pas meaning ‘all’ and sperma meaning ‘seed’) – that life exists throughout the Universe, and is distributed by asteroids, meteoroids and planetesimals – arose as an attempt to address fundamental concerns over the evolution of life on our planet, specifically the ability of life to evolve in the harsh conditions postulated to be present on the early Earth. The theory was re-popularised by Francis Crick (the co-discoverer of the structure of the DNA molecule) and Leslie Orgel in a 1973 paper that rather controversially suggested that life was intentionally sent to the Earth by an advanced civilisation on another planet.

Conditions on the early Earth were unlikely to have particularly conducive for life. A particularly unpleasant period of the Earth’s history, known as the Late Heavy Bombardment (LHB), occurred at the Hadean-Archean boundary, roughly 4 Ga ago, and was characterised by extremely high cratering rates on inner Solar System planets, evident from petrological analysis of impact craters on the mostly undisturbed surface of the Moon. The LHB presents a conundrum when considering the evolution of life on Earth: a series of statistically plausible cataclysmic asteroid or meteorite impacts would have in effect sterilised the planet, boiling the oceans and obliterating vast swathes of terra firma. However, life arose rapidly after the LHB, recorded by carbon isotope analysis of sedimentary rocks to be possibly as early as ~3.8 Ga, in direct contention with our understanding of the probabilities of the critical evolutionary steps required for the evolution of life.  Is it possible that the Earth was seeded with life during, or after, the Late Heavy Bombardment?

Approaching this problem methodically, organisms that survive interplanetary transfer would have to endure ejection from an impacted planet, transit in space and eventual re-entry and impact onto another world, thousands or perhaps millions of years later. Is this really feasible?

As it turns out, it is.

Bacillus subtilis: a surprisingly competent astronaut (isciencemag.co.uk)

Studies analysing the factors associated with the ejection process considered the ability of bacteria to endure the associated extreme pressures, temperatures and acceleration likely to be experienced at the beginning of a trip to space.  A study exposing spores of Bacillus subtilis to peak shock pressures of 32 GPa (gigapascals) and post-shock temperatures of 250 °C, similar to values expected to have been experienced by Martian ejecta, reported survival rates of 10-4, indicating that the high shock-pressures and heating associated with planetary escape may not be detrimental to bacterial survival in the long-term, providing that a significant fraction of the ejecta avoids being heated to > 100 °C. Similar research indicated that, even when Bacillus subtilis spores are subjected to acceleration 2.5 – 25 times greater than would be normally experienced by ejected material, survival rates remained between 40 and 100%.

Similarly, interplanetary space may not be as harsh an environment as initially thought, at least for bacteria encased in several metres of rock. However, there are still the issues of vacuum, long periods of thermal inactivation, desiccation, photolysis of volatiles, impacts with micrometeorites and most significantly ionising radiation, in the form of solar ultra-violet, solar particle events and galactic cosmic rays to deal with. Modelling studies suggest that organisms at the centre of objects greater than 100m in diameter receive a sterilising dose of radiation after 10 to 100 million years in space, whilst centimetre and smaller objects are sterilised in less than 10,000 years. For an estimate of transit duration, Monte-Carlo trajectory analysis used to estimate the likely duration of ejecta in space approximates that the vast majority of Martian meteorites reach the Earth within 10,000 to 100 million years; for approximately 0.1% of Martian meteorites the transit period is less than 10,000 years. On top of this, recent studies suggest that the space environment may actually be conducive to microorganism growth, providing adequate radiation defence is in place, due to a currently undiscovered mechanism disrupting the ability of antibiotics to inhibit the proliferation of bacteria.

Seems plausible so far, but what about landing? With no external evidence of lithopanspermic planetary colonisation as of yet this stage of the transfer process is perhaps the least well understood. The shock of a low angle (≤ 30°) impact is predicted to be less than those associated with ejection, so a viable population may be able to survive landing. Even large organisms, such as the worms recovered from the wreckage of the Columbia space shuttle, may be able to weather re-entry. However, environmental conditions such as nutrient availability and appropriate osmolarity, low toxicity and low predation will dictate the ability of surviving organisms to colonise the planet.

Considering the time scale of the evolution of the Solar System, the ejecta liberating LHB event and the results of empirical studies on Earth and in space, the possibility of panspermia may not as unfeasible as it first appears…

A Multiplicity of Worlds

This article was originally posted at the European Association of Geochemistry blog (click for link)

Undoubtedly the most exciting exoplanet news of the past week is the discovery of a star system with a total of 9 potential planets, surpassing even our own Solar System in terms of planetary diversity. University of Hertfordshire astronomer Mikko Tuomi discovered the bustling planetopolis around the enigmatic star HD 10180, a Sun-like G-type main sequence star 127 light years distant, using a probabilistic Bayesian analysis technique.

View of the sky around the star HD 10180 (center) Credit: ESO

HD 10180 has been known as a multi-planet system since 2010, but the last analysis of the HARPS data available for the star, carried out by Christopher Lovis last year, seemed to indicate a 6 or 7-planet system was most likely. However, the novel probabilistic methods used by Tuomi are more computationally intense than those previously applied, and confirm the findings of Lovis whilst also adding a further two planets to the planetary inventory of HD 10180.

Tuomi’s Bayesian method, which seeks to evaluate a number of possible scenarios to determine which is most consistent with the observations, finds that an orbital configuration including an eighth and ninth planet, with masses 5.1 and 1.9 times that of the Earth respectively, returns a 99.7% probability.

The planets themselves, denoted HD 10180 b through h, are a diverse bunch, including two Earth-mass terran planets, one superterran, five neptunian and one jovian-sized planet, and all are contained within 3.5 AU – roughly the distance of the asteroid belt between Mars and Jupiter in our Solar System. Despite their proximity, the orbits are predicted to be stable over astronomical time.

Orbital and size visualisation of the HD 10180 system, courtesy of Abel Mendez at the Planetary Habitability Laboratory. The blue-green area denotes the habitable zone. (click for more detail).

The image above, from the Habitable Exoplanets Catalog, provides a visualisation of the orbital system and a comparison of the sizes of the planets. Note that one neptunian, HD 10180 g, is within the habitable zone but is unlikely to be habitable given its large mass, at least not by our definition.

That’s an extraordinary array of sizes and shapes crammed into a comparatively small area, and unseats our Solar System, with a certain 8 planets (excluding trans-neputunian objects, asteroids and dwarf planets – sorry Pluto fans!), from atop the pile of planetary richness, all the while adding to our understanding of the mechanisms of planetary system formation.

Whilst this is certainly an exciting discovery, should we be surprised by the apparent ubiquity of multi-planetary systems? It would be more unusual if this architecture wasn’t the norm, given model predictions. Writing for his Scientific American blog Life, Unbounded, astrobiologist Caleb Scharf notes that the combined masses of the HD 10180 planets would only amount to roughly half that of Jupiter, and given the star’s similarity to our own Sun, its proto-planetary circumstellar disk should have contained a similar amount of material. Therefore, it wouldn’t be surprising if more planets lurked in the HD 10180 system somewhere!

In fact, the same could be said for any of the planetary systems we have detected so far as well as those that we find in the future. Our detection techniques remain biased towards massive, short-period planets that produce readily identifiable signals, particularly when using the radial velocity method, and we suffer from the fact that we have only been collecting data for a few years and so may have missed more orbitally distant, longer period planets.

However, as with most exoplanet discoveries, the detection of this diverse family of worlds serves to put our planet  into some wider perspective – to challenge the notion that Earth and this solar system are particularly unique, at least in an astronomical sense.

Solar systems, it seems, are everywhere.

The Legacy of the Present

Chaos and causality: the course of our history will be defined by the decisions we make now (Space Time Colour by Keith Peters) (artfromcode.com)

How will the future judge us? Will our descendants be proud of our legacy and the achievements we sculpted at this particular juncture in human history, fondly imagining an exciting and revelatory time gone-by? Which of our many mistakes will be remembered? What, or who, will populate the pages dedicated to the present in the historical documents of the future?

By digitally archiving nearly everything, from our words and pictures, to international news and films, to the triviality of daily emails and receipts, we are inadvertently accumulating an enormous and unprecedented time-capsule of cultural and social information, ripe for the data-miners and historians of the future to peruse and analyse. Looking back, our descendants may celebrate the hope and opportunities that we created and exploited in a time of rapid change and uncertainty. This is an age of exploration and discovery unsurpassed by any in the past. We have human beacons in orbit, on the Moon and Mars, the outer planets and two explorers poised to enter the vacuous expanse of interstellar space. We move the Earth at will, harness the power of the atom and circumvent our own biology, and that of the organisms we share this planet with, to our own means.

However, the passage of time may not reflect kindly on us. Our children, perhaps distant, will study us as remote relatives separated by a gulf of time and knowledge and bear witness to our many and varied failures of foresight, as we our parents’ before us. They will marvel at our fallibility and indifference, reflect on the disasters and injustices narrowly avoided and those sadly and painfully endured. Through the clarity provided by the looking-glass of hindsight, they will picture the beleaguered ark of our young civilisation battered by the waves of ignorance, superstition and intolerance awash in the turbulent melting-pot ocean of this age. Captained as best we can by some modicum of insight and forethought, our leaky ship may just make it to calmer waters yet. The light from the distant shore is weak and easily obscured, yet a beacon of hope and reason guides our course onwards.

The decisions we make now will be our gift, or curse, to them. What tyrants and monsters, manifest of the inhumanity of our time, will carve out their legacies and what atrocities will they commit? These monsters may be people, and often are, but they need not necessarily be so. Rather, they may be fundamental failings of reason and understanding, particularly regarding how we treat each other and this planet; mistakes borne from a myopic lack of perspective that we have all allowed to propagate unchallenged. The crucial, globally relevant decisions we make today, many lacking foresight and made either in haste or with undue hesitation, distorted by corruption and cronyism and sealed by denial and an immature lack of responsibility, will be our legacy. Sensible and objectively necessary modes of action, albeit admittedly depressing and uncomfortable in the short term, are hindered by fickle tribal loyalties over the often short, usually filthy, lifespan of the career politician.

Even now it is easy to recognise those who, in the shadows and back-streets of politics and business, lurk intoxicated and maligned by greed and paranoia and plot the downfall of us all. Those whose machinations, knowingly or otherwise, are determined to dismantle and distort the warnings repeatedly provided by those working to protect our planet from the harm that this uncontrolled, unprecedented ecological and environmental experiment is subjecting upon it. Worryingly, it is these people and their misguidance that will be remembered: those who had the chance to avert a global disaster that may have an untold effect on the future direction of our species and the continued habitability of our planet, and yet did nothing, or even actively fought mitigation attempts at every step. For the psychologists of the future, they will make for rich pickings.

For it is these people, and the organisations and ideologies that they often represent, that epitomise the ugly face of corruption and denialism that may very well go down in the annuls of history as the true monsters of our time. Those who do not heed the repeated warnings that may one day spell the end of our brief stay on this planet, those who put money before reason, denial before rationalism and whose remarkable lack of foresight will condemn us all. They will go down in history books as defenders of the worst facets of human nature. As pitiful, transparent anachronisms and the morally bankrupt pawns of the most destructive, self-centred generation of organisms that this world has ever seen.

There are plenty of reasons to be optimistic though. There is much potential, but sadly little time, to address and mitigate these mistakes. The future, providing we’re in it, will be one where sense has prevailed. By virtue of our continued existence, it has to be. Any conceivable scenario in which the evidence has been ignored, where the bellowing drone of selfish contrarians have deafened the ears of logic and reason, will be a future that we, in our current social, political and cultural form, will not be part of. There may be no one able or willing to document the fall of our civilisation at the hands of our own inherent inability to manage the finite resources of this world. There may be nothing worth remembering. We may be the last chapter in the brief, eventful history of our species, or worse perhaps, the crucial turning point of an irreversible, yet avoidable, slow decline into chaos and decay. Perhaps all intelligent civilisations eventually destroy themselves in this way and perhaps that is why, despite the statistical implausibly of it being so, we seem to be traversing space and time on our own.

But perhaps, we’re different. This may be the defining moment in the history of our species. Can we overcome the pressures we are exerting on the planet, whilst simultaneously fighting those deeply invested in defending the objectively unsustainable means by which we are attempting to secure our future? Undoubtedly, our own shortsightedness may present the biggest challenge humanity has ever faced; overcoming it is our only means to ensure that the history books of tomorrow will be written.

The European Association of Geochemistry Blog

The new blog by the European Association of Geochemistry (EAG), the body that promotes geochemistry and earth sciences in Europe and organises the annual Goldschmidt conference in partnership with its American counterpart, the Geochemical Society, launched last week. I was humbled to be asked to write an article for the launch, and perhaps contribute more regularly too, an offer which I gratefully accepted. I’ll still post regularly on here in the same vein as always, but also ply my wares over at the new blog too.

Have a read of this article for an overview of the new blog. My first post is on the astrobiological potential of Jupiter’s esoteric moon Europa, and can be found here.

AR