Planets of Purpose: Desolation and Meaning in an Empty Universe.


There were two kinds of landscape characteristic of the inner planets of the Sun: the purposeful and the desolate.

Stanislaw Lem – Fiasco (1986) [Ch.1, tr. Michael Kandel]


A loose rock tumbles slowly down a slope in a lonely valley on Mars. The hill of its origin seems unfamiliar and alien – it is more crimson and notably steeper than any rise on Earth due to Mars’ oxidizing environment and lower gravity. A loose conglomerate of ruddy scree, it seems completely devoid of life. The rock, idle in its elevated resting place for perhaps eons, now dislodged by a chance landslide caused by a violent Martian windstorm, rolls to a stop in a new location in the dry valley below. No human eyes have ever seen this boulder, no one has sat atop it to survey the panorama of the valley where it sat, or pounded it with a rock hammer to determine its composition, or crudely scrawled their initials into its surface in an attempt to immortalize a teenage love affair. What purpose, if any, does this boulder serve? Life cannot shelter beneath it or break it down for nutrients because no life exists on this frigid, desiccated planet. It inhabits an exclusively abiotic world, and whilst it will be shaped by powerful winds into exotic and unfamiliar forms, it will eventually be blown to dust by the continual onslaught of sandstorms, dissipating gradually, grain by grain, into the chaotic atmosphere. The universe seems no richer for its passing.

http://io9.com/uncanny-places-on-earth-that-look-like-alien-planets-1444739857

An alien world? Actually, this is the Atacama Desert in Chile, possibly the world’s oldest desert and one of the driest places on the planet. (via i09.com/Benjamin Dumas)

Desolation is a ubiquitous feature of the solar system. From the barren, scorched and pockmarked surface of Mercury, to the icy solitude of the gas giants, and out to the lonely minor planet Pluto in its long, dark trundle around the Sun, these are entire worlds devoid of life and the patient sculpting of natural process we are so familiar with on Earth. Their terrain is of great interest scientifically, but it is obvious that these are worlds very different to our own. They lack a certain something, an inherent dynamism that it seems only biology can imbue. They seem alien, and they are in some sense, but this feeling of other-worldliness issues forth from the unfamiliar landforms and empty horizons, broken here and there by topographies of pure abiological physicality. Nothing about these geographies serves a ‘purpose’. The craters of Mercury, or Mars, or any of the moons of Jupiter or Saturn, stand magnificent in their grandeur, but alone in the emptiness of space: many will never be explored, never investigated, chaotic in their form and distribution, but ultimately meaningless in their existence.  It is my expectation that if we were to find another planet on which life had a foothold, that world would seem somehow more familiar to us, if undoubtedly exotic and bizarre, than a planet entirely devoid of biology.

This lack of purpose, of meaning, is obviously an inherently human concept, and whilst it results in an obvious planetary dichotomy (as illustrated by the quote above), it is this contrast that should provide us with perspective on our own planet and a greater appreciation for even the smallest action borne from the ancient, intimate dance between life and our world, choreographed by natural selection and honed by a run lasting billions of years. For if we consider these alien features to be meaningless and purposeless, it follows that the only ‘purpose’ that exists is that which began on Earth, and which emanates now ever outwards, shaping, and in some cases, biasing, our view of these barren worlds. Meaning is a concept that we as humans can and do impose upon desolate landscapes. We name features on distant planets, we photograph their lonely surfaces and seek explanations for their existence, but only as an aside in our quest for a greater understanding of our place and purpose. Even here on Earth we occupy the least biologically productive environments, sometimes for science, or for economic gain, or just for the challenge, but by our very presence in these once vacant landscapes, we provide a center of purpose. The once empty environment now provides a backdrop to the human drama, an extension of the boundless stage on which we carry out the acts of our lives; a silent witness to hours, days or years of collective human strife and trivialities. But is this really all meaning is? An inherently dichotomous characteristic of place that only exists relative to biology’s insight or attention?

In searching for a word to convey this sense of emptiness, of this abiotic ‘nothingness’, the limitations of terrestrial linguistics shaped by our Earth-bound experiences and history are revealed, and the true magnitude of the desolation – often global, near complete – remains difficult to comprehend and to express cogently. A world without any ‘meaning’, any direction, any sense of teleological drive. An environment surrendered to entropy and shaped by chaos and the haphazard actions of an abiotic ‘nature’. This is a nature unbounded by the necessities of life, in which soils and rocks remain untouched by biology but are instead molded, as clay in the hands of an inanimate potter, by purely physical processes: wind, fluids, irradiation and planetary tectonism. It seems that these are the environments most favored by the universe as they litter our solar system, and almost certainly exist around billions of other stars in our galaxy and beyond. Can it really be that an entire galaxy could exist in this state of meaningless stasis? Barren, empty reaches awaiting the arrival of life to imbue meaning upon the void?

It is possible that humans are the only intelligent observer species ever to have arisen in this galaxy. If that is the case, we have a great responsibility, not only to preserve our planetary sanctum for future generations and to continue to unravel the esotericisms of the universe, but to further safeguard our existence as the fount, the point source, of absolute meaning. The universe, it seems, is indifferent to our struggles, but we can elevate ourselves above the insignificant by our individual introspection and collective scientific extrospection.

We are the Gods of Purpose, and all the universe is our Eden.

That Tingling Feeling

 

There is a word in Japanese, Yūgen (幽玄), derived from the study of Japanese aesthetics with no English equivalent, that perhaps comes closest to describing the profound sense of the enormity of the cosmos: to despair and be humbled by the insignificance of the struggle against the indifference of the universe, whilst also appreciating the sad beauty of human suffering. I often find myself grasping for a word to describe this reaction when discussing astrobiology with people, other scientists or members of the public, who find the entire field incredibly depressing; who, at some level, acknowledge the futility of our search for meaning in the distant reaches of space. Some find the emotional burden too great to bear, triggering a minor existential crisis. “It’s better not to know”, they say, “Not to think about it. Besides, [insert reality TV show name here] is on!”

On one hand, who can blame them? It’s not like we’re expecting answers to many of The Questions that astrobiology and astronomy are trying to solve in our lifetimes. Science is a gradual process after all, and one that will last as long as there are still questions to be answered. The relative insignificance of our personal lives, our careers and relationships, cast against the enormity of the cosmos and separated by orders of magnitudes of space and time, so clearly presented, can prove a bit too much. The Astronomical Perspective can be overwhelming, and astronomy, as Carl put it, is a humbling experience. I’d like to adopt yūgen as a general descriptor of these feelings.1

Yūgen-inducing perspective: Over the Top. Credit: Luc Perrot

Astrobiology is a scientific discipline practised from deep within in the realms of bounded rationality. These bounds stem from a definite, fundamental and detrimental lack of information about the system, as well as a possible cognitive and technological limitation in processing of the limited information available to us. We definitively lack the resources to arrive at an optimally rational conclusion regarding our place in the universe, the existence of suitably habitable environments elsewhere, and the possibility of life on other planets.  And yet, we know we’re close. We suffer a kind of collective Dunning-Kruger effect regarding how little we know, and how little we know about how little we know. We’re approaching that greatest of unknowns, cobbling together a piecemeal scientific narrative as we go, but missing so many parts of the puzzle that it’s not even clear what it is we’re building. Yet, something innate drives us onwards. Some part of us that has always been, as if a distant memory or half-remembered dream, within our genetic luggage and passed on to us from pre-human ancestors.

The size of our brains relative to our body size (also known as the encephalization quotient (EQ)) has, in fact, gotten smaller in recent times, peaking ~30,000 years ago after 2 million years of expansive growth. I’ll leave the anthropologists to argue over why and what this means, but making some crude assumptions about intelligence and EQ we can assume, therefore, that our extremely distant ancestors may have gazed up at the canopy of the night sky and felt that same intangible yearning as we do. At least, there seems to be no cognitive reasons that they couldn’t have done so. Maybe it was even more pronounced by the gulf of knowledge that separates their knowledge of the cosmos from our own? The bright band of the Milky Way stretched out overhead, unobscured by pollution, but hidden by ignorance; an unknowable story waiting for a narrator, one that would not arrive in earnest for thousands of years. In the meantime, complex and anthropomorphic mythologies were borne and woven by the tapestry of human imagination and fuelled by our penchant for storytelling.

Perhaps, that sense of insignificance, that yūgen, was even more heart-wrenching in the very distant past when we were young, when our contemporary achievements in understanding of our place in the greater Story would seem unfathomable, akin to magic. Perhaps, yūgen has been a driving force in our history as long as we have existed? I’m not suggesting an evolutionary driver akin to bipedalism, but perhaps a minor constituent of the human story that contributed an unquantifiable edge to our tale. An ember burning near the edge of the campfire of humanity’s intellectual awakening, smouldering away throughout the ages whilst we built our temples and cities, waged our wars and battles, waiting for the spark of enlightenment to burst into an inferno of curiosity and discovery.

That’s why I’m optimistic about our search. Sure, we may not find any concise answers to the ‘big’ questions in our lifetimes, and we’ll probably always have that sense of yūgen when faced with incomprehensible enormity on galactic and light year-scales, but rather than hiding in the dark, we should embrace the feeling of astronomical despair and turn it into a creative force for discovery! If you don’t like being insignificant, find something that makes you significant. Yūgen will be passed on to the next generation of curious scientists and philosophers, and as it has done in the past, it will drive us on to more profound questions and more mysterious unknowns.

——————————————————————————————————–

1 If any Japanese speakers are reading this, please let me know if I’m using this word incorrectly – my understanding is that the context is important.

Throwing Paradigms to the Wind of Climate Change

       

This is a guest post by Daniil Bachkirov, a joint master’s student in the School of Environmental Sciences and Philosophy at the University of East Anglia, where he studies at the juncture of the natural sciences and the humanities in order to use interdisciplinary philosophical, historical and political insights to solve the environmental crisis. He can be reached by email, and (from September) can be found at the Brockwood Park School in Hampshire. 

———————————————————————————————————————

Calls for a collective behavioural and attitudinal shift with regards to the environmental crisis abound these days, but does the language we use reflect want individuals want? Are there cultural processes at work that we continue to participate in even when we’re basically saying, “We want things to be different?” And can these cultural processes actually undermine our capacity to change our attitudes?

While it may seem piddling to be talking about language when there are real, observable, physical processes and social inequalities at work that threaten life on this planet, I ask, what enables us to come together and act on these issues? Language!

For that reason, I want to inquire into the specific terms we use to call for these “collective behavioural and attitudinal shifts”.

When Thomas Kuhn, philosopher of science, wrote in 1962 about the way in which scientific theories and practice were embedded within structures that validate certain ways of understanding nature whilst discrediting others, and that these were subject to change over time, it is unlikely that he would have anticipated the degree to which the word for these structures; “paradigms”, would find usage beyond its original meaning, as they have today. In particular, the idea of the “paradigm shift”, where a dramatic intellectual rift occurs in the scientific community about the fundamentals of scientific knowledge, after which one idea usually triumphs over another, turned out to be a popular way of referring to other kinds of shifts in ideas. You could say it’s almost a cliché.

I want to question the popularity of the “paradigm shift”. It is problematic on two fronts: Firstly, it seems to be indicative of a kind of ‘problematising’ that implicitly defines the environmental crisis in scientific terms, i.e, it is a crisis that can be reduced to the physically observable and therefore we can only act to prevent crises with sufficient objective certainty. This normalises one discourse at the expense of others. Secondly, it might not be an accurate term to describe how ideas and practices actually shift in societies. Societies after all, are far more complex than the shared scientific understandings that Kuhn called “paradigms”.

Paradigm Rift (Superglitch comics)

So, firstly, what do I mean by discourse? Broadly speaking: a set of practices and beliefs expressed through dialogue in a given culture. It is a central concept in the work of the postmodern French philosopher, Michel Foucault who was interested in examining the conditions necessary for the validation of knowledge about human beings at certain times and places. He developed an “archaeological” method to excavate historical artefacts, i.e. texts, to establish how knowledge becomes an instrument of power.

Central to this process, and the term I want to offer as a non-scientistic, more open-ended conception was the idea of the episteme, or the “epistemological field of power” which creates the necessary conditions for the emergence of knowledge. These epistemes flow into one another with no natural rhythm or progression, but can be metaphorically expressed as changing climate patterns. In this sense, Foucault was not interested in the weather, i.e. isolated ideas and historical figures, but the climate; the complex interrelations that create the weather.

I’m asking the reader to consider the potential social effects of using “paradigm shift” to refer to social and behavioural shifts in our attitude to global climate change. Does this usage not imply that everyone in human societies, like a group of scientists in the 16th century moving from the Ptolemaic to the Copernican model, is at the same level of understanding and appreciation of the problem of global climate change to collectively understand and choose to act upon a shift to a “new paradigm”?

Does it also not imply that global climate change is only a problem for science? And if the dominant ideology in scientism happens to be one of materialism, does using “paradigm shift” not add to a climate of popular understanding that the problems of climate change can be reduced to its materially observable effects?

We need to remember that when we call for a “paradigm shift” in our environmental beliefs and practices, we are employing a metaphor from the world of science. Metaphors work on the principle of shared understanding and reveal value-laden, culturally embedded meaning-making processes. They also work on the principle of “feedback loops”, so that those meanings and values embedded in a metaphor are circulated back into society through their regular use, validating those meanings and values.

Might we consider using a term more focused on the broad analysis of intellectual climates rather than a metaphor from a specific discipline? Or better yet, abandon the call for “paradigm shifts” all together?

Lost in Space: Finding a Sense of Place in the Cosmos

This is a guest post by Sean McMahona PhD student in the School of Geosciences at the University of Aberdeen. Sean’s research applies geological perspectives and techniques to astrobiological problems ranging from the origin and distribution of life in the universe to the origin of methane in the Martian atmosphere. Visit his excellent blog, Fourth Planetfor more on his research, his impressive space art and photography, and writings.

———————————————————————————————————————

“Though a planetary perspective is a magnificent and enriching thing, places, not planets, are the core of human experience. It is from places that we build our world.”

—    Mapping Mars, Oliver Morton (2002)

“He stood thereby, though ‘in the centre of Immensities, in the conflux of Eternities,’ yet manlike towards God and man; the vague shoreless Universe had become for him a firm city, and dwelling which he knew.”

—    The French Revolution: A History, Thomas Carlyle (1837)

Last year, in a car park in Aberdeen, I saw Jupiter through a telescope for the first time. What I saw was not the familiar red-spotted giant from the Nasa photographs, that great bronze bauble marbled with cream like artisan coffee—no. What I saw, through a gap in the Scottish clouds, was a pale round smudge with three white specks for moons. It was not dramatic but it was a strange and lovely moment. It reminded me that Jupiter, the other planets, and even the distant stars and galaxies, are no less real, no less here—albeit further away—than Scotland, clouds, car parks, and me. They are on the same map, sharing our geography, our humdrum commonplace reality.

In our eagerness to be inspired by astronomical imagery, we are often tempted to forget this fundamental sameness. Documentaries about the cosmos besiege us with spectacular graphics, rousing orchestral music and rapturous, lyrical narration. In the tradition of Carl Sagan, we are urged to adopt a “cosmic perspective”, in which the Earth dwindles to an insignificant1 “mote of dust suspended in a sunbeam”. Meanwhile, digital space art is reliving the Romanticism of 19th Century painting: balance, proportion and subtlety are abandoned in favour of vertiginous perspectives, extremes of colour and contrast, and sublime, mystical lighting: silhouetted planets disintegrate into vast purple nebulae bristling with crepuscular rays. Thus, it seems that an ecstatic, almost mythical vision of outer space, emphasizing above all its spiritual and aesthetic grandeur, has taken root in popular culture.

McMahon juvenilia. This is what I thought space looked like when I was 17. I have since changed my mind.

McMahon juvenilia. This is what I thought space looked like when I was 17. I have since changed my mind.

Maybe that vision has some role to play in attracting public interest to the space sciences. But paradoxically, it can make the “wonders of the universe” seem less accessible than ever; profound, ethereal, miraculous, even unreal. It bolsters the popularity of astrology by reinforcing the illusion that planets and stars are unfathomable, heavenly beings: much more plausible aids to divination than ordinary material things. Most worryingly, it can give the impression that space exploration is an esoteric spiritual quest, unrelated to ordinary human problems and unfit for serious attention from media, government or young, career-minded scientists.

Perhaps the “numinous” view of space reflects a deeper failure to grasp the implications of the Copernican Revolution. Somehow, I suggest, we still make some kind of basic ontological distinction between the heavens and the Earth2. Consequently, we are unable to feel truly embedded in our extraterrestrial environment, which remains a transcendent, detached and coldly beautiful space rather than a homely, material, lived-in place. The Apollo programme helped to bridge that gap for a generation, transforming the moon from an icon of celestial indifference into a humanly intelligible landscape—rather like a golf course, in fact, replete with bunkers, buggies, flags and footprints3. Revealingly, many people today find it easier to believe that the whole thing was a hoax.

A Summer 2012 photograph by NASA's Curiosity rover inside Gale Crater on Mars.

A Summer 2012 photograph by NASA’s Curiosity rover inside Gale Crater on Mars.

The sharp, vivid photographs taken by NASA’s Curiosity Rover can have a similar effect, reminding us that the martian surface is a real place, not so different in appearance from the rocky deserts of Libya or the High Arctic. Despite our unsophisticated cultural relationship with outer space—a mixture of mythology, indifference and reverence—a crewed mission to Mars in the next thirty years now seems very likely. I hope that mission will allow the next generation to feel more at home in the universe, more fully at ease with the fact that even Milton Keynes4 is part of the Milky Way. What we stand to gain is not an exalted “cosmic perspective” but simply a richer, more expansive sense of place, of where it is that we live our lives.

—————————————————————-

1     This strain of rhetoric characteristically fails to observe that human beings adjudicate the significance of the universe, not the other way around.

2      Douglas Adams exploited this confusion to humorous effect, juxtaposing ordinary things with cosmic phenomena: the “restaurant at the end of the universe,” the “whelk in a supernova” and so on; “you may think it’s a long way down the road to the chemist but that’s just peanuts compared to [the size of] space”.

3      Some readers will know that the American astronaut Alan Shephard did in fact play golf on the moon; two golf balls remain there.

4       Milton Keynes is an architecturally unprepossessing English town and home to the Open University, where much British space research has been conducted.